Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mycotoxin Res ; 40(1): 175-186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224413

RESUMO

Aflatoxin B1 is a highly carcinogenic and teratogenic substance mainly produced by toxin-producing strains such as Aspergillus flavus and Aspergillus parasitic. The efficient decomposition of aflatoxin is an important means to reduce its harm to humans and livestock. In this study, Trametes versicolor aflatoxin B1-degrading enzyme (TV-AFB1D) was recombinantly expressed in Bacillus subtilis (B. subtilis) 168. MMT-CTAB-AFB1D complex was prepared by the immobilization of TV-AFB1D and montmorillonite (MMT) by cross-linking glutaraldehyde. The results indicated that TV-AFB1D could recombinantly express in engineered B. subtilis 168 with a size of approximately 77 kDa. The immobilization efficiency of MMT-CTAB-AFB1D reached 98.63% when the concentration of glutaraldehyde was 5% (v/v). The relative activity of TV-AFB1D decreased to 72.36% after reusing for 10 times. The content of AFB1 in MMT-CTAB-AFB1D-AFB1 decreased to 1.1 µg/g from the initial 5.6 µg/g after incubation at 50 °C for 6 h. The amount of 80.4% AFB1 in the MMT-CTAB-AFB1D-AFB1 complex was degraded by in situ catalytic degradation. Thus, the strategy of combining adsorption and in situ degradation could effectively reduce the content of AFB1 residue in the MMT-CTAB-AFB1D complex.


Assuntos
Aflatoxina B1 , Polyporaceae , Trametes , Humanos , Aflatoxina B1/metabolismo , Trametes/metabolismo , Bentonita , Cetrimônio , Glutaral
2.
Metabolites ; 13(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37512492

RESUMO

Aflatoxin pollution poses great harm to human and animal health and causes huge economic losses. The biological detoxification method that utilizes microorganisms and their secreted enzymes to degrade aflatoxin has the advantages of strong specificity, high efficiency, and no pollution inflicted onto the environment. In this study, Bacillus subtilis WJ6 with a high efficiency in aflatoxin B1 degradation was screened and identified through molecular identification, physiological, and biochemical methods. The fermentation broth, cell-free supernatant, and cell suspension degraded 81.57%, 73.27%, and 8.39% of AFB1, respectively. The comparative transcriptomics analysis indicated that AFB1 led to 60 up-regulated genes and 31 down-regulated genes in B. subtilis WJ6. A gene ontology (GO) analysis showed that the function classifications of cell aggregation, the organizational aspect, and the structural molecule activity were all of large proportions among the up-regulated genes. The down-regulated gene expression was mainly related to the multi-organism process function under the fermentation condition. Therefore, B. subtilis WJ6 degraded AFB1 through secreted extracellular enzymes with the up-regulated genes of structural molecule activity and down-regulated genes of multi-organism process function.

3.
Biotechnol Biofuels Bioprod ; 16(1): 66, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046321

RESUMO

BACKGROUND: The thermotolerant yeast is beneficial in terms of efficiency improvement of processes and reduction of costs, while Saccharomyces cerevisiae does not efficiently grow and ferment at high-temperature conditions. The sterol composition alteration from ergosterol to fecosterol in the cell membrane of S. cerevisiae affects the thermotolerant capability. RESULTS: In this study, S. cerevisiae ERG5, ERG4, and ERG3 were knocked out using the CRISPR-Cas9 approach to impact the gene expression involved in ergosterol synthesis. The highest thermotolerant strain was S. cerevisiae ERG5ΔERG4ΔERG3Δ, which produced 22.1 g/L ethanol at 37 °C using the initial glucose concentration of 50 g/L with an increase by 9.4% compared with the wild type (20.2 g/L). The ethanol concentration of 9.4 g/L was produced at 42 ℃, which was 2.85-fold of the wild-type strain (3.3 g/L). The molecular mechanism of engineered S. cerevisiae at the RNA level was analyzed using the transcriptomics method. The simultaneous deletion of S. cerevisiae ERG5, ERG4, and ERG3 caused 278 up-regulated genes and 1892 down-regulated genes in comparison with the wild-type strain. KEGG pathway analysis indicated that the up-regulated genes relevant to ergosterol metabolism were ERG1, ERG11, and ERG5, while the down-regulated genes were ERG9 and ERG26. S. cerevisiae ERG5ΔERG4ΔERG3Δ produced 41.6 g/L of ethanol at 37 °C with 107.7 g/L of corn liquefied glucose as carbon source. CONCLUSION: Simultaneous deletion of ERG5, ERG4, and ERG3 resulted in the thermotolerance improvement of S. cerevisiae ERG5ΔERG4ΔERG3Δ with cell viability improvement by 1.19-fold at 42 °C via modification of steroid metabolic pathway. S. cerevisiae ERG5ΔERG4ΔERG3Δ could effectively produce ethanol at 37 °C using corn liquefied glucose as carbon source. Therefore, S. cerevisiae ERG5ΔERG4ΔERG3Δ had potential in ethanol production at a large scale under supra-optimal temperature.

4.
Front Microbiol ; 13: 960882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187979

RESUMO

Aflatoxin B1 (AFB1) contaminates rice during harvest or storage and causes a considerable risk to human and animal health. In this study, Trametes versicolor AFB1-degrading enzyme (TV-AFB1D) gene recombinantly expressed in engineered E. coli BL21 (DE3) and Saccharomyces cerevisiae. The TV-AFB1D enzymatic characteristics and AFB1 degradation efficiency in contaminated rice were investigated. Results showed that the size of recombinant TV-AFB1D expressing in E. coli BL21 (DE3) and S. cerevisiae was appropriately 77 KDa. The kinetic equation of TV-AFB1D was y = 0.01671x + 1.80756 (R 2 = 0.994, Km = 9.24 mM, and Vmax = 553.23 mM/min). The Kcat and Kcat/Km values of TV-AFB1D were 0.07392 (s-1) and 8 M-1 s-1, respectively. The AFB1 concentration of contaminated rice decreased from 100 µg/ml to 32.6 µg/ml after treatment at 32°C for 5 h under the catabolism of TV-AFB1D. S. cerevisiae engineered strains carrying aldehyde oxidase 1 (AOX1) and Cauliflower mosaic virus 35 S (CaMV 35 S) promoters caused the residual AFB1 contents, respectively, decreased to 3.4 and 2.9 µg/g from the initial AFB1 content of 7.4 µg/g after 24 h of fermentation using AFB1-contaminated rice as substrate. The AFB1 degradation rates of S. cerevisiae engineered strains carrying AOX1 and CaMV promoters were 54 and 61%, respectively. Engineered S. cerevisiae strains integrated with TV-AFB1D expression cassettes were developed to simultaneously degrade AFB1 and produce ethanol using AFB1-contaminated rice as substrate. Thus, TV-AFB1D has significant application potential in the AFB1 decomposition from contaminated agricultural products.

5.
Microb Cell Fact ; 21(1): 160, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964044

RESUMO

BACKGROUND: Saccharomyces cerevisiae generally consumes glucose to produce ethanol accompanied by the main by-products of glycerol, acetic acid, and lactic acid. The minimization of the formation of by-products in S. cerevisiae was an effective way to improve the economic viability of the bioethanol industry. In this study, S. cerevisiae GPD2, FPS1, ADH2, and DLD3 genes were knocked out by the Clustered Regularly Interspaced Short Palindromic Repeats Cas9 (CRISPR-Cas9) approach. The mechanism of gene deletion affecting ethanol metabolism was further elucidated based on metabolic flux and transcriptomics approaches. RESULTS: The engineered S. cerevisiae with gene deletion of GPD2, FPS1, ADH2, and DLD3 was constructed by the CRISPR-Cas9 approach. The ethanol content of engineered S. cerevisiae GPD2 Delta FPS1 Delta ADH2 Delta DLD3 Delta increased by 18.58% with the decrease of glycerol, acetic acid, and lactic acid contents by 22.32, 8.87, and 16.82%, respectively. The metabolic flux analysis indicated that the carbon flux rethanol in engineered strain increased from 60.969 to 63.379. The sequencing-based RNA-Seq transcriptomics represented 472 differential expression genes (DEGs) were identified in engineered S. cerevisiae, in which 195 and 277 genes were significantly up-regulated and down-regulated, respectively. The enriched pathways of up-regulated genes were mainly involved in the energy metabolism of carbohydrates, while the down-regulated genes were mainly enriched in acid metabolic pathways. CONCLUSIONS: The yield of ethanol in engineered S. cerevisiae increased with the decrease of the by-products including glycerol, acetic acid, and lactic acid. The deletion of genes GPD2, FPS1, ADH2, and DLD3 resulted in the redirection of carbon flux.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Álcool Desidrogenase/genética , Etanol/metabolismo , Fermentação , Glicerol/metabolismo , Ácido Láctico/metabolismo , Proteínas de Membrana/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma
6.
J Fungi (Basel) ; 8(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35887459

RESUMO

Bioethanol plays an important value in renewable liquid fuel. The excessive accumulation of glycerol and organic acids caused the decrease of ethanol content in the process of industrial ethanol production. In this study, the CRISPR-Cas9 approach was used to construct S. cerevisiae engineering strains by the deletion of GPD2, FPS1, and ADH2 for the improvement of ethanol production. RNA sequencing and transcriptome analysis were used to investigate the effect of gene deletion on gene expression. The results indicated that engineered S. cerevisiae SCGFA by the simultaneous deletion of GPD2, FPS1, and ADH2 produced 23.1 g/L ethanol, which increased by 0.18% in comparison with the wild-type strain with 50 g/L of glucose as substrate. SCGFA strain exhibited the ethanol conversion rate of 0.462 g per g of glucose. In addition, the contents of glycerol, lactic acid, acetic acid, and succinic acid in SCGFA decreased by 22.7, 12.7, 8.1, 19.9, and 20.7% compared with the wild-type strain, respectively. The up-regulated gene enrichment showed glycolysis, fatty acid, and carbon metabolism could affect the ethanol production of SCGFA according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Therefore, the engineering strain SCGFA had great potential in the production of bioethanol.

7.
Toxins (Basel) ; 13(5)2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068167

RESUMO

Aflatoxins seriously threaten the health of humans and animals due to their potential carcinogenic properties. Enzymatic degradation approach is an effective and environmentally friendly alternative that involves changing the structure of aflatoxins. In this study, Trametes versicolor aflatoxin B1-degrading enzyme gene (TV-AFB1D) was integrated into the genome of Pichia pastoris GS115 by homologous recombination approach. The recombinant TV-AFB1D was expressed in engineering P. pastoris with a size of approximately 77 kDa under the induction of methanol. The maximum activity of TV-AFB1D reached 17.5 U/mL after the induction of 0.8% ethanol (v/v) for 84 h at 28 °C. The AFB1 proportion of 75.9% was degraded using AFB1 standard sample after catalysis for 12 h. In addition, the AFB1 proportion was 48.5% using AFB1-contaminated peanuts after the catalysis for 18 h at 34 °C. The recombinant TV-AFB1D would have good practical application value in AFB1 degradation in food crops. This study provides an alternative degrading enzyme for the degradation of AFB1 in aflatoxin-contaminated grain and feed via enzymatic degradation approach.


Assuntos
Aflatoxina B1/metabolismo , Arachis/química , Polyporaceae/genética , Saccharomycetales/genética , Enzimas/genética , Polyporaceae/enzimologia , Saccharomycetales/enzimologia , Temperatura , Fatores de Tempo
8.
Artigo em Inglês | MEDLINE | ID: mdl-32117915

RESUMO

Rare sugar D-allulose as a substitute sweetener is produced through the isomerization of D-fructose by D-tagatose 3-epimerases (DTEases) or D-allulose 3-epimerases (DAEases). D-Allulose is a kind of low energy monosaccharide sugar naturally existing in some fruits in very small quantities. D-Allulose not only possesses high value as a food ingredient and dietary supplement, but also exhibits a variety of physiological functions serving as improving insulin resistance, antioxidant enhancement, and hypoglycemic controls, and so forth. Thus, D-allulose has an important development value as an alternative to high-energy sugars. This review provided a systematic analysis of D-allulose characters, application, enzymatic characteristics and molecular modification, engineered strain construction, and processing technologies. The existing problems and its proposed solutions for D-allulose production are also discussed. More importantly, a green and recycling process technology for D-allulose production is proposed for low waste formation, low energy consumption, and high sugar yield.

9.
J Oleo Sci ; 69(3): 219-226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115547

RESUMO

Microcapsules were constructed with starch sodium octenyl succinate (SSOS), ß-cyclodextrin (ß-CD), and pectin walls and peony seed oil cores. A rheological phenomenon occurred in which the emulsion initially behaved like a shear-thickening fluid and then a shear-thinning fluid within a shear range. The emulsion exhibited good stability under low amplitude stress; however, as amplitude increased the concentration of pectin played an important role in maintaining the stability of the emulsion system. The optimum embedding yield of peony seed oil (92.5%) was achieved with a ratio of 70% SSOS, 22.5% ß-CD, and 7.5% pectin. This ratio produced 4.521 µm particles with the lowest surface-oil content (2.60%) and moisture content (1.76%). The peony seed oil microcapsules were spherical with smooth surfaces and a synchronous thermogravimetric analysis showed they possessed good thermal stability. Encapsulation increased the induction period to 5-7 times that of unencapsulated peony seed oil.


Assuntos
Cápsulas , Emulsões , Paeonia/química , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Sementes/química , Fenômenos Químicos , Amido , Succinatos , Temperatura
10.
Bioresour Technol ; 297: 122472, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31791917

RESUMO

The present study enlightens facile synthesis and characterization of magnetic biochar derived from waste banana pseudostem biomass for the removal of nitrofuran antibiotic 'furazolidone' (FZD). Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), magnetic hysteresis, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) revealed successful hybridization of magnetic nanocomposites with biochar (BPB600). The maximum adsorption capacity of magnetic BPB600 was 96.81% (37.86 mg g-1), which was significantly higher than the non-coated BPB600 (77.25%; 31.45 mg g-1). Adsorption kinetics data fitted well with pseudo-second order, and Elovich model demonstrating dominance of the chemisorption mechanism. Furthermore, the response surface methodology (RSM) was applied to evaluate the interactive effect of pH, temperature, and FZD concentration on adsorption. Therefore, the results of present study would provide an effective strategy to tackle antibiotic contaminants responsible for the antibiotic resistance genes or bacteria that decreases the therapeutic value of antibiotics.


Assuntos
Musa , Nanocompostos , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Furazolidona , Cinética , Fenômenos Magnéticos , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Artigo em Inglês | MEDLINE | ID: mdl-31681748

RESUMO

Crude oil degumming by phospholipid removal is crucial to guarantee oil quality. Phospholipase degumming could produce green vegetable oil by reducing energy consumption and protecting the environment. To develop a novel phospholipase for oil degumming, we cloned the Serratia marcescens outer membrane phospholipase A gene (OM-PLA1) and expressed its 33 KDa protein in engineered Escherichia coli BL21(DE3). OM-PLA1 activity reached 18.9 U mL-1 with the induction of 0.6 mM isopropyl ß-D-1-thiogalactopyranoside for 4 h. The optimum temperature and pH were 50°C and 7.5, respectively. Mg2+, Ca2+, Co2+, and Mn2+ at 0.1 mM L-1 significantly increased OM-PLA1 activity. The kinetic equations of OM-PLA1 and Lecitase Ultra were y = 13.7x+0.74 (Km = 18.53 mM, Vmax = 1.35 mM min-1) and y = 24.42x+0.58 (Km = 42.1 mM, Vmax = 1.72 mM min-1), respectively. The phosphorus content decreased from 22.6 to 9.3 mg kg-1 with the addition of 15 units of free recombinant OM-PLA1 into 150 g of crude rapeseed oil. OM-PLA1 has the close degumming efficiency with Lecitase Ultra. The S. marcescens outer membrane phospholipase gene (OM-PLA1) possessed higher substrate affinity and catalytic efficiency than Lecitase Ultra. This study provides an alternative approach to achieve crude vegetable oil degumming with enzymatic technology.

12.
Front Microbiol ; 10: 334, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30846983

RESUMO

Enzymatic degumming is an effective approach to produce nutritional, safe, and healthy refined oil. However, the high cost and low efficiency of phospholipase limit the application of enzymatic degumming. In this study, an 879 bp outer membrane phospholipase A (A1) (OM-PLA1) gene encoding 292 amino acid residues was isolated from the genome of Serratia marcescens. The recombinant OM-PLA1 profile of appropriately 33 KDa was expressed by the engineered Pichia pastoris GS115. The OM-PLA1 activity was 21.2 U/mL with the induction of 1 mM methanol for 72 h. The expression efficiencies of OM-PLA1 were 0.29 U/mL/h and 1.06 U/mL/OD600. A complex of magnetic graphene oxide (MGO) and OM-PLA1 (MGO-OM-PLA1) was prepared by immobilizing OM-PLA1 with graphene oxide-based Fe3O4 nanoparticles by cross-linking with glutaraldehyde. The content of phosphorus decreased to 5.1 mg/kg rapeseed oil from 55.6 mg/kg rapeseed oil with 0.02% MGO-OM-PLA1 (w/w) at 50°C for 4 h. MGO-OM-PLA1 retained 51.7% of the initial activity after 13 times of continuous recycling for the enzymatic degumming of rapeseed oil. This study provided an effective approach for the enzymatic degumming of crude vegetable oil by developing a novel phospholipase and improving the degumming technology.

13.
Braz. J. Pharm. Sci. (Online) ; 55: e17819, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1055326

RESUMO

Weaning results in intestinal dysfunction, mucosal atrophy, transient anorexia, and intestinal barrier defects. In this study, the effect of prodigiosin (PG) on the intestinal inflammation of weaned rats was investigated by using 1H-NMR spectroscopy and biochemistry indexes to regulate the intestinal metabolism. After administration for 14 days, the body mass of the PG group was increased by 1.29- and 1.26-fold compared with those of the control and alcohol groups, respectively, using a dose of 200 µg PG·kg-1 body weight per day. PG increased organic acid content and decreased moisture, pH values, and free ammonia in feces. In addition, PG alleviated the intestinal inflammation of weaned rats. The analysis of 1H-NMR signal peak attribution and the model validation of metabolic data of feces contents showed that PG significantly affected the metabolism of small molecular compounds in the intestinal tract of weaned rats. This study presents the promising alternative of using PG to alleviate intestinal inflammation effectively in the intestinal tract of weaned rats.


Assuntos
Animais , Masculino , Ratos , Prodigiosina/efeitos adversos , Desmame , Bioquímica/classificação , Espectroscopia de Prótons por Ressonância Magnética/métodos , Inflamação/classificação , Anorexia , Dosagem/efeitos adversos , Concentração de Íons de Hidrogênio , Metabolismo/efeitos dos fármacos
14.
Front Microbiol ; 9: 2436, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364071

RESUMO

The development of lignocellulosic bioethanol plays an important role in the substitution of petrochemical energy and high-value utilization of agricultural wastes. The safe and stable expression of cellulase gene sestc was achieved by applying the clustered regularly interspaced short palindromic repeats-Cas9 approach to the integration of sestc expression cassette containing Agaricus biporus glyceraldehyde-3-phosphate-dehydrogenase gene (gpd) promoter in the Saccharomyces cerevisiae chromosome. The target insertion site was found to be located in the S. cerevisiae hexokinase 2 by designing a gRNA expression vector. The recombinant SESTC protein exhibited a size of approximately 44 kDa in the engineered S. cerevisiae. By using orange peel as the fermentation substrate, the filter paper, endo-1,4-ß-glucanase, exo-1,4-ß-glucanase activities of the transformants were 1.06, 337.42, and 1.36 U/mL, which were 35.3-fold, 23.03-fold, and 17-fold higher than those from wild-type S. cerevisiae, respectively. After 6 h treatment, approximately 20 g/L glucose was obtained. Under anaerobic conditions the highest ethanol concentration reached 7.53 g/L after 48 h fermentation and was 37.7-fold higher than that of wild-type S. cerevisiae (0.2 g/L). The engineered strains may provide a valuable material for the development of lignocellulosic ethanol.

15.
World J Microbiol Biotechnol ; 34(5): 65, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29687334

RESUMO

D-Allulose as a low-energy and special bioactive monosaccharide sugar is essential for human health. In this study, the D-psicose-3-epimerase gene (DPEase) of Agrobacterium tumefaciens was transferred into thermotolerant Kluyveromyces marxianus to decrease the production cost of D-allulose and reduce the number of manufacturing procedures. The cell regeneration of K. marxianus and cyclic catalysis via whole-cell reaction were investigated to achieve the sustainable application of K. marxianus and the consumption of residual D-fructose. Results showed that DPEase, encoding a 33 kDa protein, could be effectively expressed in thermotolerant K. marxianus. The engineered K. marxianus produced 190 g L-1 D-allulose with 750 g L-1 D-fructose as a substrate at 55 °C within 12 h. Approximately 100 g of residual D-fructose was converted into 34 g of ethanol, and 15 g of the engineered K. marxianus cells was regenerated after fermentation at 37 °C for 21 h. The purity of D-allulose of more than 90% could be obtained without isolating it from D-allulose and D-fructose mixture through residual D-fructose consumption. This study provided a valuable pathway to regenerate engineered K. marxianus cells and achieve cyclic catalysis for D-allulose production.


Assuntos
Agrobacterium tumefaciens/enzimologia , Agrobacterium tumefaciens/genética , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Frutose/metabolismo , Kluyveromyces/genética , Kluyveromyces/fisiologia , Regeneração , Catálise , Clonagem Molecular , Estabilidade Enzimática , Etanol/metabolismo , Fermentação , Regulação Enzimológica da Expressão Gênica , Vetores Genéticos , Concentração de Íons de Hidrogênio , Kluyveromyces/crescimento & desenvolvimento , Engenharia Metabólica , Temperatura , Fatores de Tempo
16.
Appl Microbiol Biotechnol ; 102(13): 5533-5543, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29691630

RESUMO

Microbial transglutaminase (MTG) from Streptomyces mobaraensis has been widely used for crosslinking proteins in order to acquire products with improved properties. To improve the yield and enable a facile and efficient purification process, recombinant vectors, harboring various heterologous signal peptide-encoding fragments fused to the mtg gene, were constructed in Escherichia coli and then expressed in Bacillus subtilis. Signal peptides of both WapA and AmyQ (SP wapA and SP amyQ ) were able to direct the secretion of pre-pro-MTG into the medium. A constitutive promoter (P hpaII ) was used for the expression of SP wapA -mtg, while an inducible promoter (P lac ) was used for SP amyQ -mtg. After purification from the supernatant of the culture by immobilized metal affinity chromatography and proteolysis by trypsin, 63.0 ± 0.6 mg/L mature MTG was released, demonstrated to have 29.6 ± 0.9 U/mg enzymatic activity and shown to crosslink soy protein properly. This is the first report on secretion of S. mobaraensis MTG from B. subtilis, with similar enzymatic activities and yields to that produced from Escherichia coli, but enabling a much easier purification process.


Assuntos
Bacillus subtilis/genética , Proteínas Recombinantes/metabolismo , Transglutaminases/metabolismo , Bacillus subtilis/metabolismo , Sinais Direcionadores de Proteínas/genética , Streptomyces/enzimologia
17.
Biosci Biotechnol Biochem ; 82(1): 106-109, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29198166

RESUMO

Microbial transglutaminase (MTG) is an enzyme widely used in the food industry. Mutiple-site mutagenesis of Streptomyces mobaraensis transglutaminase was performed in Escherichia coli. According to enzymatic assay and thermostability study, among three penta-site MTG mutants (DM01-03), DM01 exhibited the highest enzymatic activity of 55.7 ± 1.4 U/mg and longest half-life at 50 °C (418.2 min) and 60 °C (24.8 min).


Assuntos
Streptomyces/enzimologia , Transglutaminases/metabolismo , Ativação Enzimática , Estabilidade Enzimática , Escherichia/genética , Mutação , Temperatura , Transglutaminases/genética
18.
3 Biotech ; 8(1): 12, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29259887

RESUMO

The development of agricultural residue ethanol has a profound effect on the environment protection and energy supply. To increase the production efficiency of straw ethanol and reduce operation progress, the single-enzyme-system-three-cellulase gene (sestc) engineered Aspergillus niger and sestc engineered Saccharomyces cerevisiae were combined to produce ethanol using the pretreated rice straw as the substrate. The present results showed that both the step-by-step and in situ saccharification and fermentation can effectively produce ethanol using rice straw as the carbon substrate. The conversion rates of ethanol were 12.76 and 14.56 g per 1 kg of treated rice straw, respectively, via step-by-step and in situ processes. In situ process has higher ethanol conversion efficiency of rice straw and fewer operation processes as compared with step-by-step process. Therefore, in situ saccharification and fermentation is a more economical and effective pathway to convert rice straw into ethanol. This study provides a reference to the conversion of lignocellulosic residues into ethanol with a combination of two kinds of sestc engineered strains.

19.
3 Biotech ; 6(2): 192, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28330264

RESUMO

Bioethanol is an important oil substitute produced by the sugar fermentation process. To improve the efficiency of cellulase expression of Saccharomyces cerevisiae, a eukaryotic expression vector harboring a single-enzyme-system-three-cellulase gene (sestc) was integrated into the S. cerevisiae genome by the protoplast method. Using PCR screening, RT-PCR, and "transparent circle" detection, several recombinant S. cerevisiae strains, capable of efficiently expressing the heterogeneous cellulase, were selected. The total activity of cellulase, endo-ß-D-glucanase, exo-ß-D-glucanase, and xylanase of the recombinant S. cerevisiae transformant (designated number 14) was 1.1, 378, 1.44, and 164 U ml-1, respectively, which was 27.5-, 63-, 24-, and 19-fold higher than that of the wild-type strain. The concentration of ethanol produced by the engineered S. cerevisiae strain was 8.1 gl-1, with wheat bran as the carbon source, under submerged conditions; this was 57.86-fold higher than that produced by the wild-type strain (0.14 gl-1).

20.
3 Biotech ; 6(2): 236, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28330308

RESUMO

Aspergillus niger is an important microorganism that has been used for decades to produce extracellular enzymes. In this study, a novel Aspergillus niger strain integrated with a eukaryotic expression vector harboring the gpd-Shi promoter of shiitake mushrooms and cellulase gene of Ampullaria gigas Spix was engineered to improve cellulase production for the achievement of highly efficient saccharification of agricultural residues. In one strain, designated ACShi27, which exhibited the highest total cellulase expression, total cellulase, endoglucanase, exoglucanase, and xylanase expression levels were 1.73, 16.23, 17.73, and 150.83 U ml-1, respectively; these values were 14.5, 22.3, 24.6, and 17.3% higher than those of the wild-type Aspergillus niger M85 using wheat bran as an induction substrate. Production of cellulases and xylanase by solid-state fermentation followed by in situ saccharification of ACShi27 was investigated with alkaline-pretreated rice straw as a substrate. After 2 days of enzyme induction at 30 °C, followed by 48 h of saccharification at 50 °C, the conversion rate of carbon polymers into reducing sugar reached 293.2 mg g-1, which was 1.23-fold higher than that of the wild-type strain. The expression of sestc in Aspergillus niger can improve the total cellulase and xylanase activity and synergism, thereby enhancing the lignocellulose in situ saccharification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...